1、在大数据时代,我们可以告别数据匮乏,做出的决策将更理性,更基于事实,当然也更可靠。这是大数据时代带给我们的希望——更好的决策将会代替我们过往那些可疑的迷信和不可靠的人类预感。
2、大数据时代来了。最早提出“大数据”时代已经到来的机构麦肯锡,在报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
3、所以,直觉和大数据在决策中都是非常重要的。直觉可以带给我们创新的想法和灵感,而大数据则可以提供更具体、更实际的依据,帮助我们做出更合理、更明智的决策。
大数据分析的优点:能够准备得出可靠信息,有助于企业发展,已经找到自己的方向;缺点:信息透明化,大数据比你更了解你自己。大数据优点:(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
大数据分析是一种处理海量数据的技术和方法,能够从中提取出新的见解、信息和价值。大数据所涵盖的数据包括结构化数据、半结构化数据和非结构化数据等多个方面。大数据分析所用到的技术手段除了大数据处理技术,还包括机器学习、深度学习、人工智能、数据挖掘、统计学、预测分析等等。
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、真实性(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。
大数据分析是对海量数据的专业分析。 这一分析过程涉及数据的收集、清洗、挖掘和解释,以实现数据的价值转化。 大数据技术的发展目标之一是提高处理大数据的效率,例如,通过语音识别技术加速报告生成。 此外,大数据分析还强调生成直观的可视化报告,以便于人工解读和分析。
大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
对于“大数据”(Big data)1)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
但仅仅只是因为这些数据是非结构化的或更难进行筛选分析,并不意味着大数据必然是更安全。如果所有的大数据存储库都是有用的,就不能将所有每一条信息都进行同等的维护。正如InfoWorld的安得烈C.奥利弗指出的那样:“您企业所收集的数据越多,保持这些数据细粒度的任务和挑战也就越艰巨。
信息安全协调在业务关系中起着相当重要的作用,这其中包括外包,离岸供应链和云服务提供商。数据保密:大量的数据产生、存储和分析,数据保密问题将在未来几年内成为一个更大的问题。企业必须尽快开始规划新的数据保护,同时监测进一步的立法和监管的发展。
安全威胁:大数据的开放性和共享性也增加了安全威胁的面。在大数据时代,数据的来源和去向更加复杂和多样化,数据泄露和篡改的风险也更大。此外,随着机器学习和人工智能等技术的广泛应用,黑客攻击也更加智能化和自动化,这使得防御变得更加困难。
大数据的弊:数据收集增加了安全风险,因为更多的数据意味着更大的隐私泄露风险。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。大数据成为网络攻击的显著目标。在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。
总的说来,大数据应该说是具有相当大的价值,但同时它又存在巨大的安全隐患,一旦落入非法分子手中,势必对企业和个人造成巨大的损失。套用一句话,世界是很公平的,收入与风险是成正比的。